ASR
This module allows recognizing audio in wav format and returning a text response.
There are 3 operating modes:
- offline - file upload and text response after complete recognition
- streaming - file upload and text chunks response in streaming mode
- real-time streaming - audio upload in chunks and response in chunks (WebSocket)
Usage Example
- ASR
## Automatic Speech Recognition Model
You can specify `stream=True` then the recognized text will be streamed.
```python
import requests
stream = True
url = "http://localhost:8080/v1/audio/transcriptions"
audio_name = "test.wav"
response = requests.post(
url,
headers={
"Authorization": "TOKEN_1",
}
files={
"file": (audio_name, open(audio_name, "rb"), "audio/wav")
},
stream=stream
)
for line in response.iter_lines(decode_unicode=True):
print(line)
Real-time mode is also available via Web Socket
Important! The model has been tested for sample rate 8000.
import wave
import os
import tempfile
import asyncio
import websockets
import librosa
import soundfile as sf
audio_name = "test.wav"
REQUIRED_SR = 8000
def prepare_audio(audio_name, required_sr):
with wave.open(audio_name, "rb") as wf:
sample_rate = wf.getframerate()
sample_width = wf.getsampwidth()
channels = wf.getnchannels()
num_frames = wf.getnframes()
duration = num_frames / sample_rate
if sample_rate != required_sr or channels != 1 or sample_width != 2:
print("Resampling audio...")
y, sr = librosa.load(audio_name, sr=None, mono=True)
y_resampled = librosa.resample(y, orig_sr=sr, target_sr=required_sr)
fd, temp_wav = tempfile.mkstemp(suffix=".wav")
os.close(fd)
sf.write(temp_wav, y_resampled, required_sr, subtype="PCM_16")
print(f"Saved resampled file as {temp_wav}")
return temp_wav
else:
return audio_name
chunk_duration_ms = 300
required_sr = REQUIRED_SR
audio_for_send = prepare_audio(audio_name, required_sr)
with wave.open(audio_for_send, "rb") as wf:
sample_rate = wf.getframerate()
sample_width = wf.getsampwidth()
channels = wf.getnchannels()
num_frames = wf.getnframes()
duration = num_frames / sample_rate
chunk_samples = int(sample_rate * (chunk_duration_ms / 1000))
chunk_bytes = chunk_samples * sample_width * channels
print(f"Recommended chunk size: {chunk_bytes} bytes ({chunk_samples} samples, {chunk_duration_ms} ms)")
CHUNK_SIZE = chunk_bytes
WS_URL = "http://localhost:8080/v1/realtime/transcriptions/?model_id=t-tech/T-one"
async def send_audio(ws):
with open(audio_for_send, "rb") as f:
while True:
chunk = f.read(CHUNK_SIZE)
if not chunk:
break
await ws.send(chunk)
await asyncio.sleep(chunk_samples / sample_rate)
await ws.send(b"")
async def recv_results(ws):
try:
async for msg in ws:
if isinstance(msg, str):
try:
msg = json.loads(msg)
if msg.get("event") == "transcript":
print("TEXT:", msg["phrase"]["text"])
except Exception as e:
print("Parse error:", e)
except websockets.ConnectionClosed:
print("WS closed.")
async def main():
async with websockets.connect(WS_URL, additional_headers=headers) as ws:
await asyncio.gather(
send_audio(ws),
recv_results(ws)
)
asyncio.run(main())
if audio_for_send != audio_name:
os.remove(audio_for_send)
print(f"Removed temporary file: {audio_for_send}")